Coideal Quantum Affine Algebra and Boundary Scattering of the Deformed Hubbard Chain
نویسندگان
چکیده
We consider boundary scattering for a semi-infinite one-dimensional deformed Hubbard chain with boundary conditions of the same type as for the Y=0 giant graviton in the AdS/CFT correspondence. We show that the recently constructed quantum affine algebra of the deformed Hubbard chain has a coideal subalgebra which is consistent with the reflection (boundary YangBaxter) equation. We derive the corresponding reflection matrix and furthermore show that the aforementioned algebra in the rational limit specializes to the (generalized) twisted Yangian of the Y = 0 giant graviton. 1 [email protected], 2 [email protected] 3 [email protected]
منابع مشابه
Quantum group symmetry in sine-Gordon and affine Toda field theories on the half-line
We consider the sine-Gordon and affine Toda field theories on the half-line with classically integrable boundary conditions, and show that in the quantum theory a remnant survives of the bulk quantized affine algebra symmetry generated by nonlocal charges. The paper also develops a general framework for obtaining solutions of the reflection equation by solving an intertwining property for repre...
متن کاملSolitons, Boundaries, and Quantum Affine Algebras
This is a condensed write-up of a talk delivered at the Ramanujan International Symposium on Kac-Moody Lie algebras and Applications in Chennai in January 2002. The talk introduces special coideal subalgebras of quantum affine algebras which appear in physics when solitons are restricted to live on a half-line by an integrable boundary condition. We review how the quantum affine symmetry determ...
متن کاملThe Quantum Algebraic Structure of the Twisted XXZ Chain
We consider the Quantum Inverse Scattering Method with a new R-matrix depending on two parameters q and t. We find that the underlying algebraic structure is the twoparameter deformed algebra SUq,t(2) enlarged by introducing an element belonging to the centre. The corresponding Hamiltonian describes the spin-1/2 XXZ model with twisted periodic boundary conditions. e-mail addresses: (a) mmont@cb...
متن کاملCoideal subalgebras in quantum affine algebras
We introduce two subalgebras in the type A quantum affine algebra which are coideals with respect to the Hopf algebra structure. In the classical limit q → 1 each subalgebra specializes to the enveloping algebra U(k), where k is a fixed point subalgebra of the loop algebra glN [λ, λ −1] with respect to a natural involution corresponding to the embedding of the orthogonal or symplectic Lie algeb...
متن کاملar X iv : m at h / 02 08 04 3 v 1 [ m at h . Q A ] 6 A ug 2 00 2 QUANTUM AFFINE
Quantum affine reflection algebras are coideal subalgebras of quantum affine algebras that lead to trigonometric reflection matrices (solutions of the boundary Yang-Baxter equation). In this paper we use the quantum affine reflection algebras of type d (1) n to determine new n-parameter families of non-diagonal reflection matrices. These matrices describe the reflection of vector solitons off t...
متن کامل